Tensor RG Approach to High-Temperature Fixed Point
نویسندگان
چکیده
We study a renormalization group (RG) map for tensor networks that include two-dimensional lattice spin systems such as the Ising model. Numerical studies of RG maps have been quite successful at reproducing known critical behavior. In those numerical must be truncated to keep dimension legs tensors bounded. Our act on an infinite-dimensional Hilbert space, and our does not involve any truncations. has trivial fixed point which represents high-temperature point. prove if we start with is close this tensor, then iterates converge in Hilbert-Schmidt norm tensor. It important emphasize statement true simplest network one simply contracts four copies define renormalized The linearization simple about contraction due presence so-called CDL tensors. work provides first step towards problem rigorous neighborhood
منابع مشابه
fixed point property for banach algebras associated to locally compact groups
در این پایان نامه به بررسی خاصیت نقطه ثابت و خاصیت نقطه ثابت برای نیم گروههای برگشت پذیر چپ روی بعضی جبرهای باناخ از جمله جبر فوریه و جبر فوریه استیلتیس پرداخته شده است. برای مثال بیان شده است که اگر گروه یک گروه فشرده موضعی با همسایگی فشرده برای عنصر همانی که تحت درونریختی ها پایاست باشد آنگاه جبر فوریه و جبر فوریه استیلتیس دارای خاصیت نقطه ثابت برای نیم گروه های برگشت پذیر چپ است اگر و تنها ا...
15 صفحه اولHow to measure Functional RG fixed-point functions for dynamics and at depinning
– We show how the renormalized force correlator ∆(u), the function computed in the functional RG (FRG) field theory, can be measured directly in numerics and experiments on the dynamics of elastic manifolds in presence of pinning disorder. For equilibrium dynamics we recover the relation obtained recently in the statics between ∆(u) and a physical observable. Its extension to depinning reveals ...
متن کاملA fixed point approach to the stability of additive-quadratic-quartic functional equations
In this article, we introduce a class of the generalized mixed additive, quadratic and quartic functional equations and obtain their common solutions. We also investigate the stability of such modified functional equations in the non-Archimedean normed spaces by a fixed point method.
متن کاملA FIXED POINT APPROACH TO THE INTUITIONISTIC FUZZY STABILITY OF QUINTIC AND SEXTIC FUNCTIONAL EQUATIONS
The fixed point alternative methods are implemented to giveHyers-Ulam stability for the quintic functional equation $ f(x+3y)- 5f(x+2y) + 10 f(x+y)- 10f(x)+ 5f(x-y) - f(x-2y) = 120f(y)$ and thesextic functional equation $f(x+3y) - 6f(x+2y) + 15 f(x+y)- 20f(x)+15f(x-y) - 6f(x-2y)+f(x-3y) = 720f(y)$ in the setting ofintuitionistic fuzzy normed spaces (IFN-spaces). This methodintroduces a met...
متن کاملQuantum Entanglement and Tensor Network RG
For many decades, the Landau theory of symmetry breaking has dominated thinking about phase transitions. Recent interest in topological phases and quantum orders, which lie beyond the realm of symmetry breaking theory. Need a more robust framework. RG provides. I describe how numerical RG can be used to understand phases beyond sym. breaking. Implementation for quantum ordered phases requires i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Physics
سال: 2022
ISSN: ['0022-4715', '1572-9613']
DOI: https://doi.org/10.1007/s10955-022-02924-4